k8¡¤¿­·¢(¹ú¼Ê) - ¹Ù·½ÍøÕ¾

µ±Ç°Î»ÖÃ:

ÃçÔ­£º×ãЭ¿ª»áÕû¶ÙÈü·çÈü¼Í£¬ÌÖÂÛ½üÆÚ²»ºÍгÏÖÏó¡£

À´Ô´£º24Ö±²¥Íø
  • »ð·ïÖ±²¥ {ÈÈÃÅÍÆ¼ö}
  • NBA¾«²ÊÖ±²¥
  • ×ãÇòÏÖ³¡Ö±²¥
  • ÌðÐÄÖ÷²¥½âÅÌ

ÔÚ4ÔÂ24ÈÕµÄÖ±²¥ÖУ¬¾ÝÖªÃûýÌåÈËÃçÔ­ÔÚÉ罻ýÌåÉÏ͸¶µÄÏûÏ¢£¬Öйú×ãÇòЭ»áµ±ÌìÕÙ¼¯ÁËÒ»³¡ÖØÒªµÄ»áÒé¡£´Ë´Î»áÒéµÄÒéÌâÖ÷ÒªÊÇÕë¶Ô½üÆÚÈü³¡ÉϳöÏÖµÄһϵÁв»ºÍгÏÖÏó£¬Ö¼ÔÚÕû¶ÙÇò¶ÓµÄÈü·çÈü¼Í¡£

ÃçÔ­ÏêϸµØÐ´µÀ£¬×ãЭÒѾ­²ì¾õµ½ÁËÇò³¡ÉϵÄÖî¶àÎÊÌ⣬¾ö¶¨½ñÌì½øÐÐÌÖÂÛ²¢Ñ°Çó½â¾öÖ®µÀ¡£²»½öÕë¶Ô˼ÏëÉϵÄÎÊÌ⣬´Ë´Î»áÒéÒ²º­¸ÇÁËÈü³¡ÉϵÄÖÖÖÖ²»¹æ·¶ÐÐΪ¡£ÖÐ×ãÁªÒ²»ý¼«²ÎÓëÆäÖУ¬»áÒéµÄ¹æ¸ñÖ®¸ß£¬ÏÔʾ³ö×ãЭ¶Ô´Ë´ÎÕû¶ÙµÄ¾öÐĺÍÖØÊӳ̶ȡ£

ÖµµÃÒ»ÌáµÄÊÇ£¬´Ë´Î»áÒéÒÔÊÓÆµÐÎʽ½øÐУ¬ËùÓоãÀÖ²¿µÄÄÐÅ®Çò¶Ó¶¼²ÎÓëÁËÕâ´Î²Î»á¡£¸÷¶Ó¡¢¸÷ÈüÇøÒÔ¼°ÇòÃÔЭ»á¶¼Ó¦¸Ã¸ß¶È¹Ø×¢´Ë´Î»áÒéµÄÄÚÈݺͺóÐøÐж¯¡£×ãЭϣÍûÒÔ´ËΪÆõ»ú£¬´Ó¶à¸ö·½Ãæ¼ÓÇ¿Çò¶ÓµÄ¹ÜÀíºÍ½ÌÓý£¬´òÔìÒ»¸ö¸üΪ¹«Æ½¡¢ºÍгµÄ×ãÇò±ÈÈü»·¾³¡£ÎÞÂÛÊÇÔÚÈü³¡ÄÚÍâµÄÐÐΪ£¬»¹ÊǶÔÓÚ¹æÔòµÄ×ñÊØºÍ×ðÖØ£¬¶¼ÊÇ×ãÇòÔ˶¯Öв»¿É»òȱµÄ²¿·Ö¡£...º¯Êýf(x) = (1/3)x^3 - x^2 - 9x + a µÄ¼«Öµ.

¡¾·ÖÎö¡¿

ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔÊÇÇó¼«ÖµµÄ»ù±¾·½·¨£®Ê×Ïȸù¾Ýº¯Êý½âÎöʽÇó³öµ¼Êý$f^{\prime}(x)$£¬ÔÙÁî$f^{\prime}(x) = 0$Çó³öÁÙ½çµã£¬È»ºó¸ù¾Ýµ¼ÊýµÄÕý¸ºÅжϺ¯ÊýµÄµ¥µ÷ÐÔ£¬´Ó¶øÇó³öº¯ÊýµÄ¼«Öµ£®

¡¾½â´ð¡¿

½â£ºÓÉÌâÒâµÃ$f^{\prime}(x) = x^{2} - 2x - 9 = (x + 3)(x - 3)$£®

Áî$f^{\prime}(x) = 0$µÃ$x = - 3$»ò$x = 3$£®

µ±$x < - 3$»ò$x > 3$ʱ£¬$f^{\prime}(x) > 0$£»µ±$- 3 < x < 3$ʱ£¬$f^{\prime}(x) < 0$£®

Òò´Ëº¯ÊýÔÚ$( - \infty, - 3)$ÉϵÝÔö£¬ÔÚ$( - 3,3)$Éϵݼõ£¬ÔÚ$(3, + \infty)$ÉϵÝÔö£®

ËùÒÔµ±$x = - 3$ʱº¯ÊýÓм«´óÖµ£»µ±$x = 3$ʱº¯ÊýÓм«Ð¡Öµ£®

¼«´óֵΪ£º$f( - 3) = \frac{1}{3} \times ( - 3)^{3} - ( - 3)^{2} - 9 \times ( - 3) + a = a + 18$£»

¼«Ð¡ÖµÎª£º$f(3) = \frac{1}{3} \times 3^{3} - 3^{2} - 9 \times 3 + a = a - 18$£®

¡¾ÍøÕ¾µØÍ¼¡¿¡¾sitemap¡¿